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1 Introduction

One can argue it is the case that the fundamental nature of the physical world

is that it is quantized in such a way that phasespace is granular1, and one

can observe that digital computation is discrete and granular too. Given these

similarities, one might try to see just how far one can go in “connecting” the

two. In this regard, Richard Feynman gave a talk entitled “Simulating Physics

with Computers” in 1981: “I want to talk about the possibility that there is to

be an exact simulation, that the computer will do exactly the same as nature.

If this is to be proved..., then it’s going to be necessary that everything that

happens in a finite volume of space and time would have to be exactly analyzable

with a finite number of logical operations. The present theory of physics is not

that way, apparently. It allows space to go down into infinitesimal distances,

wavelengths to get infinitely great, terms to be summed to infinite order, and

so forth...” In this seminal talk and in subsequent papers [27, 28], Feynman

discussed an interesting possibility: the possibility of constructing a quantum

computer to simulate quantum mechanics.

As the fundamental computational element’s size reduces to nanoscale ranges

its behavior is governed by quantum mechanics. There is hope that in the future

computation will be achieved with “quantum gates” [46, 42, 9, 33, 4]. Follow-
1To see this, count the number of possible energy levels for a particle in a cubical box of

length side X. The particle’s momentum components are quantized by periodic boundaries
conditions so pi = hni

X
, where i = (1, 2, 3) is an index over spatial directions and ni are

integers. Therefore to count the number of states E ≤ E◦, we have

p21
2m

+
p22
2m

+
p23
2m

≤ P 2

2m
,

where E◦ = P2

2m
. In terms of the quantum numbers this is

n2
1 + n2

2 + n2
3 ≤ P 2X2

h2
.

Defining an effective radius as R ≡ PX
h

it is clear that the number of energy levels for a
particle in a box is equal to the count of the number of points in a sphere of radius R. This
is just the volume of the accessible phasespace in units of Planck’s constant. Therefore,

N(E ≤ E◦) ∼ 4π
3
R3 =

Vphasespace

δVphasespace
,

where the volume of phasespace is Vphasespace = 4π
3 (PX)3 and the smallest unit of phasespace

is δVphasespace = h3 ∼ (δpδx)3. So according to quantum mechanics, phasespace is granular.
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ing present-day electronic computer design philosophy, research has focused on

quantum gate counterparts of well known universal reversible logic gates, for

instance the two-input/two-output quantum XOR gate [4]. The prevailing ex-

pectation is to use the simplest universal quantum gates in networks to fashion

arbitrary n-bit unitary operators. But the bits in such a “quantum computer”

are quite different than the bits we are accustomed to in present-day conven-

tional computers. A review of quantum computation has been provided by

Ekert and Jozsa [25].

In quantum computing a two-level quantum object–termed a quantum bit

or qubit–represents the smallest unit of information [27, 5, 23, 45, 8, 35]. Unlike

a classical bit, a qubit, | q〉, may be in a superposition of the Boolean states

| 0〉 and | 1〉 so that | q〉 = α | 0〉 + β | 1〉. If one measures the value of the

qubit there would be a certain amplitude, α, of it being in the zero state, | 0〉,
and another amplitude, β, of finding it in the one state, | 1〉. The probabilities

must add to unity: 〈0 | 0〉 + 〈1 | 1〉 = 〈q | q〉 so the complex coefficients

are constrained by | α |2 + | β |2= 1. Examples of quantum objects used

to represent qubits are two energy-level states of the fine structure splitting

in the valence shell electron of a cesium atom held in a laser trap, or the z-

component of the nuclear spin of an atom in a uniform external magnetic field.

Light is used to initialize the individual spin states of the qubits (writing),

then pairs of adjacent qubits interact via dipole-dipole coupling for example

where the computing cycle is initiated by a particular sequence of light pulses,

and finally light is used to measure the resulting individual spin states of the

qubits (reading) [43]. This kind of controlled light-and-matter interaction is

well known in nuclear magnetic resonance experiments where π-pulses are used

to tip nuclear spins. For example, recently Cory et al. have employed the

quantum number mz of a nuclear spin of an atom in a molecule of a liquid

placed in a strong external magnetic field to encode a single qubit and they

used nuclear magnetic resonance to control its state and interaction with qubits

in neighboring atoms within the same molecule [20].

Quantum computation aims to exploit the superposition of states as a prac-
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tical means of parallel computing. This is termed quantum parallelism [23, 24].

After a decade of exploring Feynman’s conjecture, it is now believed possible to

indeed exploit quantum mechanics substitute quantum polynomial complexity

for classical exponential complexity [61, 25, 63, 64, ?]. Quantum computing

relies on having interactions of a collection of qubits occurring in a controlled

fashioned to achieve unprecedented parallelism not available in classical com-

puting.

Shor’s algorithm exemplifies how factoring can in principle be done on a

quantum computer in a time that grows polynomially in the number of qubits

used to encode a large composite number2 [61]. It is difficult for a classical

computer to factor a number a large composite number and this fact is the cor-

nerstone upon which cryptographic algorithms are based.3 Consequently, Shor’s

scheme for factoring numbers has stirred much interest in quantum computing.

An issue for quantum computing is isolating the qubits from the surrounding

environment. Since interference effects among qubits are essential for the com-

putation, uncontrolled coupling with the environment may destroy such effects.

Quantum parallelism levies a high demand for coherence of the quantum com-

puter’s wavefunction to be realized by avoiding uncontrolled entanglement with

the external world. Developing robust algorithms and scalable error correction

techniques is considered crucial for the enterprise to continue [18, 8, 43, 25].

The tremendous difficulty of maintaining quantum coherence poses a problem

that must be resolved before a quantum computer can be built. Because of the

stringent demand for quantum coherence, prospects for any foreseeable quan-

tum computers are focused on those containing only a very small number of
2Presently, there is no known classical factoring method in the polynomial complexity

class, and furthermore, it is unproven that such a classical method does not exist. In Shor’s
algorithm, all factors are superposed in a quantum computer’s “register” in polynomial time.
A modulus operation is applied to all factors simultaneously producing a periodic function.
The correct factor corresponds to the period of this function. A discrete Fourier transform
is taken. Consequently, the peak in the power spectrum of the transformed data locates the
factor. An amount of memory exponential in the number of bits of the composite number
is not needed to perform the discrete transform. In this way a massively parallel search is
accomplished in polynomial time.

3In 1994 a network of 1,600 computers around the world factored a 129-digit number in
eight months, a 250-digit number would take two centuries on this network.
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qubits.

In light of the possibilities and limitations of quantum mechanical comput-

ing, it is worthwhile to consider how one might profit from connections between

quantum computing and physics. We shall show that lattice-based particle mod-

els implemented on hypothetical spatially fine-grained quantum computers ex-

hibit, in the macroscopic scaling limit, an interesting “quasi-physical” dynamics

that offers the computational physicist results not obtainable with conventional

techniques.

Ever since Feynman’s conjecture, many have imaged how a quantum com-

puter might actually work. A good starting point is reversible computing [29].

Occasionally microscopic physics appears reversible—it is reversible only if there

is no coupling to degrees of freedom such as photons or phonons that can es-

cape to infinity, and that condition is rarely met. Since microscopic physics is

sometimes well approximated as reversible, it is interesting to consider compu-

tational algorithms that are reversible. It is important to comprehend reversible

algorithms useful for simulating reversible physics on a nanoscale device since

these algorithms may serve as a guide for constructing such a device. The prin-

ciple assumption is a quantum device itself undergoes reversible evolution as it

progresses through its “computation”. Furthermore, it is assumed that if irre-

versible evolution does occur, it is because the algorithm itself has caused this,

not uncontrolled coupling to the external environment.

Even before quantum mechanical superposition of states, correlations, and

entanglement become algorithmically important, the unitarity of the dynamical

evolution becomes a significant benefit at very high logic densities where the

dissipation of heat caused by irreversible computations is a menacing engineering

issue [6, 7]. In nanoscale computing, one benefit of reversible algorithms is

the avoidance of heat production. Since information is exactly preserved in

a reversible algorithm, the entropy is constant throughout the course of the

calculation, consequently since dQ = TdS = 0, no heat is produced.

For any reversible computation, one can describe the algorithm by a com-

putational evolution operator, denoted Û , acting on the state data, | Ψ〉, which
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is the configuration state of the computer memory. The new state data, | Ψ′〉,
is generated at follows

| Ψ′〉 = Û | Ψ〉. (1)

By repeated application of Û an ordered sequence of states is generated where

each state is given a unique time label. If the first state is labeled by t then the

next state is labeled by t + τ , and the next by t + 2τ , and so forth. With this

understanding we write (1) as

| Ψ(t+ τ)〉 = Û | Ψ(t)〉. (2)

In this way the computational time advances incrementally in unit steps of du-

ration τ . Of course the state of the quantum computer exists at all intermediate

times, say at t+ τ
2 , but for our purposes we need only use the state at intervals of

the time step τ . The computer’s quantum evolution is invertible by application

of the adjoint of the evolution operator

| Ψ(t− τ)〉 = Û† | Ψ(t)〉. (3)

This computational picture is consistent with the Heisenberg picture of quan-

tum mechanics. For any reversible algorithm chosen, the task is to map the

computational Hamiltonian of the algorithm on to the physical Hamiltonian of

interacting qubits of the nanoscale device that is to implement the quantum

computation.

What kind of physical simulation can be achieved on a fine-grained quantum

computer? To understand the operation of a fine-grained quantum computer, it

may be useful to understand first the operation of a fine-grained classical com-

puter. For this reason, I first explore how a viscous fluid and a multiphase fluid

can “live” in the confines of a computer simulation called a classical lattice gas,

which has artificially discrete dynamics. In a classical lattice gas algorithm, the

evolution operator is a permutation matrix with components being zero or one.

The hope that simple discrete computational models such as a classical lattice

gas can capture some of the behavior of fluids undergoing phase transitions has
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contributed to my motivation to study of such artificial dynamical systems im-

plemented on fine-grained computers; I argue in Volume that my hope has been

realized.

Next, I explore how one might emulate a quantum fluid in an exact quan-

tum computer simulation. A quantum lattice gas is a generalization of a classical

lattice gas where quantum bits replace classical bits [74]. In a quantum lattice

gas algorithm, the computational evolution operator is a general unitary ma-

trix with complex components. The microscopic reversibility of the lattice-gas

paradigm is compatible with the constraint that quantum mechanics requires

unitary, and hence invertible, time evolution.

Quantum lattice gases are a realization of Feynman’s conjecture: it is now

known that quantum lattice gases can exhibit behavior quite similar to the

many-body behavior described by the Schrödinger equation of nonrelativistic

quantum mechanics [63, 64, ?] or superfluid Helium II [76]. It appears to be

a most interesting problem to quantify the similarity between the behaviors of

the “artificial quantum fluid” and real quantum.

2 Viscous Multiphase Fluids

The analysis of a system of many particles is applied at three separate scales or

physical regimes. The microscopic scale deals with the motions of the individual

particles in the system. At this level using the metaphor that permeates this

the lattice-gas subject, we may take everything to be discrete. A particle is

a discrete microscopic object possessing a scalar mass, m, that moves through

space with vector momentum, m~v. At this scale, consider space as being divided

up into a collection of coordinatized volume elements. That is, each volume

element of space has a unique coordinate ~x, which might be the coordinate of

its centroid. Each volume element is of size `3 which is much larger than the

size of an individual particle. Suppose all the possible directions of momenta are

denumerable so that they can be counted by the integers a = 1, . . . , B, where

B denotes the total number of possible directions in which a particle could be
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moving through space.

Next, the mesoscopic scale deals with the expectation value of microscopic

quantities obtained by averaging over an appropriate mesoscopic statistical en-

semble. For example, the statistical mechanics of Boltzmann applies at the

mesoscopic scale. Let fa(~x, t) denote the probability of finding a particle at

time t moving in direction êa with speed va located within the volume element

with coordinate ~x. fa(~x, t) is the particle distribution function and it obeys the

Boltzmann equation, in Boltzmann’s mesoscopic model.

Finally, the macroscopic scale deals with emergent hydrodynamic behavior

of the system. At this scale, one characterizes the dynamical behavior of the sys-

tem by partial differential equations of motion, one for each additive conserved

quantity of the system (viz. mass, momentum, and energy). At the macroscopic

scale the relevant quantities are continuous and the system behaves like a fluid.

Define at the macroscopic scale two real valued quantities: the mass density,

ρ(~x, t), proportional to the number of particles at time t in the volume element

centered at position coordinate ~x

ρ(~x, t) = m

B∑
a=1

fa(~x, t), (4)

and the momentum density, ρ(~x, t)~v(~x, t), proportional to the total momentum

at time t in the volume element centered at position coordinate ~x

ρ(~x, t)~v(~x, t) =
B∑

i=a

mvaêafa(~x, t). (5)

A quantity used to characterize fluid motion is the characteristic length scale

of the flow, denoted Lf . It is on the order of the length of the inverse spatial

gradient of the distribution function, fa/∂ifa, characterizing the size of the hy-

drodynamic fluctuation. Examples of the characteristic length scale for hydro-

dynamic flow is the size of one wavelength of the fluid’s density field oscillation

(a wavelength of sound) or the shear width of the fluid’s velocity field. The mean

free path length, λ, is the average distance a particle travels between collisions.

The smallest possible mean free path length for a particle in a lattice-gas fluid
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is on the order of the grain size of the lattice, `. An important dimensionless

quantity is the Knudsen number, denoted Kn, which is the ratio of the mean

free path length to the characteristic length scale, λ∂ ∼ λ
Lf

. Another important

dimensionless quantity is the Mach number, denoted M, which is the ratio of

the characteristic velocity of the fluid flow to the speed of sound, v
cs

. The hy-

drodynamic description for a lattice-gas fluid is valid at small Knudsen numbers

and small Mach numbers.

For any fluid where mass is conserved, which is the case for a lattice-gas

fluid, there is a continuity equation that holds true at the macroscopic scale.

To second order in the smallness this is the following

∂tρ+ ∂i(ρvi) = O(ε3). (6)

Here the shorthand notation for partial derivatives is used: ∂t ≡ ∂/∂t and

∂i ≡ ∂/∂xi. Similarly, for any fluid where momentum is conserved, which

is also the case for a lattice-gas fluid, there is a Navier-Stokes equation that

holds true at the macroscopic scale. The Navier-Stokes equation for a viscous,

incompressible fluid to second order in the smallness is the following

∂t(ρvi) − ∂j(ρvivj) = −∂iP + ρν∂2vi + O(ε3). (7)

A lattice based procedure for deriving (6) and (7) from the Boltzmann equation

for fa(~x, t) is given in Volume I. The very subtle limiting procedure is explained

in the derivations.

In (7), ν is the kinematic viscosity, the transport coefficient for momentum

diffusion. It gives a measure for the rate of decay of local shears in the fluid and

determines how fast a perturbed fluid will relax from a locally anisotropic flow

profile back to its isotropic steady state profile.

Furthermore in (7), P is the pressure of the fluid. In general the pressure

is a function of the density and temperature, P = P (ρ, T ), this is termed the

equation of state. The form of the equation of state arises from local collisional

scattering and the microscopic mechanism underlying the interfluid force −∂iP

caused by nonlocal two-point momentum exchanges between particles.
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The pressure has two contributing parts: it is the sum of a local ideal part

and a nonlocal part

P = P ideal + V. (8)

The ideal part of the pressure is directly proportional to the local density,

P ideal = cs(T )2ρ, where cs is the sound wave speed at temperature T [72]. The

quantity V = V(ρ, T ) appearing in (8) is called the interaction energy density.

Its value depends on nonlocal interactions between different configurations of

particles within the fluid system.

The interparticle force within the fluid due the interaction energy density V
is

Fi = −∂iV. (9)

If the equation of state for a multiphase fluid has a flat region, there exists a

phase transition between different overall organizational configurations of par-

ticles in the fluid. Fluid pressure below the ideal value arises from negative V
which in turn is caused by interparticle binding forces between spatially sepa-

rated particles. Given a strong enough interparticle binding force, the pressure

can decrease with density over some limited range of densities—the slope of the

equation of state curve would be negative, ∂P
∂ρ < 0. In this situation, the fluid’s

compressibility would become negative and induce instability. To remain stable

(∂P
∂ρ = 0), the fluid phase separates, for example into liquid and gas phases, and

consequently the fluid’s isothermal compressibility, defined by ρ−1(∂ρ/∂P )T , di-

verges. The response of the fluid density to small perturbations in the pressure

is infinite. In other words, small perturbations cause large scale restructuring

or reorganization of particles throughout the entire fluid system [62].

3 Ways to Simulate a Fluid

How precisely can one represent on a computer a physical system like the mul-

tiphase fluid system mentioned above? There are several ways to try to do

such a fluid simulation on a computer. One way is to implement a “high level”

numerical scheme (such as a finite-difference scheme, or spectral method, or
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finite-element approach) that approximates the continuity equation (6) coupled

to a nonideal Navier-Stokes equation (7). This is a valid approach only at small

Knudsen numbers which means any density variation across an interfacial region

must be smooth and slowing changing, or a special theory of such boundary lay-

ers must be supplied. Yet the nonideal pressure in (7) will cause the interfaces

to sharpen with steep density variations. In the interfacial regions equations

(6) and (7) alone cannot adequately provide a correct description of the fluid’s

behavior, including for example the phase separation, spinoidal decomposition,

growth of drops dense fluid or bubbles of rarefied fluid form, and the coales-

cence of drop or bubbles driven by surface tension on thin interfaces. In the

coexistence region of a liquid-gas fluid for example, the interfacial regions are

usually so thin that gradient terms appearing in a partial differential equations

become singular. So augmented partial differential equation are needed for an

adequate high-level description.

An example of this is known as model H [36], a set of partial differential

equations that models the behavior of the bulk flow with dynamic interfacial

motions. The coupled equations are valid near the critical point where the fluid’s

pressure curve as a function of density has an inflection point, ∂P
∂ρ

∣∣∣
ρ=ρc

∼ 0,

which occurs at a particular value of the fluid density called the critical density.

There is a Cahn-Hilliard diffusion equation for the fluid’s order parameter, ψ,4

∂tψ = λo∂
2 δF
δψ

− go
δF
δji

∂iψ, (10)

where F is the fluid’s free energy functional. This is written as

F =
∫
dDx

[
1
2
(∇ψ)2 + V(ψ) +

1
2
j2

]
. (11)

The Cahn-Hilliard equation (10) is coupled to a Navier-Stokes equation through

the momentum density, j, appearing in the free energy functional (11). The
4Note that order parameter is conserved by continuity ∂tψ = −λo∂iJi where the current

is defined as Ji = −∂i(δF/δψ). Here the order parameter represents the quantity ψ =
ε− (µ̄+T σ̄)ρ, where nε is the energy density, µ̄ is the chemical potential, and σ̄ is the entropy
per unit mass [36] and ψ is the grand potential density.
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gradient squared term gives rise to surface tension and the interaction potential

V ∼ −α

2

(
T − Tc

Tc

)
ψ2 +

β

4
ψ4 (12)

drives the order parameter to zero or one (given suitable normalization of the

parameters α and β) causing separation for T < Tc where the parameters α

and β are positive definite. The validity of this approach away from the critical

point is uncertain.

Is there a way to model a multiphase fluid away from the critical point? One

way familiar to me is to use a microscopically complete molecular dynamics

approach. Before going on to discuss molecular dynamics, it is useful to be

aware of a computational limitation that arises in high level partial differential

formulations of physical systems: the occurrence of floating point numerical

round-off error which is ubiquitous on classical computers, must be avoided in

any algorithm implemented on a quantum computer to exploit the unitarity of

quantum mechanical evolution.

4 Numerical Round-Off Error

The advent of digital computing in the second half of this century offers a

paradigm that is distinctly granular in nature. In present day computing, dis-

crete digital memory causes granularity in the numerical representation. Real

numbers are used in most formulations of dynamical physical systems. Usually

in computer simulations of dynamical physical systems, real valued quantities

are represented by floating point numbers that have only a finite number of

digits of precision. Floating point convention approximates a real number in

exponential form by using two finite integers, one integer for the mantissa and

the other for the exponent.5 In modern dissipative computing floating-point

errors is often quite menacing.

In computational schemes using a simple floating point protocal, the value

of the most significant bits dominates the simulation’s outcome under numer-
5The IEEE convention for 32-bit floating point uses 8-bits for exponent, 1-bit for sign, and

23-bits for mantissa. IEEE convention for 64-bit floating point uses 11-bits for exponent, 1-bit
for sign, and 52-bits for mantissa.
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ically stable regimes. This is a consequence of weighting the most significant

bits exponentially more than the least significant bits. In floating point opera-

tions (i.e multiplication and division) there exist uncontrolled round-off errors

in the least significant bits of the number. In unstable regimes, these small

uncontrolled round-off errors in the least significant bits grow over the course of

the numerical simulation and cause it to behave unphysically, even halting the

simulation by overflow or underflow events. Any computational physicist is well

acquainted with numerical instabilities associated with underflow or overflow in

the range of some floating point variable.

The prevalence of numerical instabilities in floating point numerical schemes

leads one to ask the question: Do there exist computational schemes that have

no round-off error? Such computational schemes do exist and they can closely

mimic the behavior of some physical systems, as we shall show.

5 Molecular Dynamics

One direct “low level” way to simulate on a computer the dynamical behavior

of complex fluids is to model the actual molecular dynamics of all the particles

in the fluid [1, 54]. The simulation of molecules undergoing interparticle inter-

actions has the advantage of completeness in that all relevant physical processes

at the kinetic scale can be captured. However the drawback of the traditional

molecular dynamics approach is one of limited scale.

With the largest available supercomputers today one is capable of simulating

the dynamics of hundreds of millions of particles. Yet the characteristic scale of

a liquid simulation is quite small, on the order of a single micron in domain size.

And with simulation volumes on the order of a cubic micron, a typical simulation

run can mimic the behavior of this collection of molecules only for a short time

span on the order of a few nanoseconds. Greater scales can be achieved by Monte

Carlo techniques, but this gives information about equilibrium properties only

and dispenses with all dynamical and nonequilibrium information.

A many-body system that behaves as a fluid is a concrete presentday example
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of a physical system that can be approximated with a computational numerical

scheme without any uncontrolled round-off error arising from floating point

arithmetic.6 Before describing a nonfloating point lattice gas numerical scheme

for molecular dynamics, it is worthwhile to describe what molecular dynamics

is in some detail.

Molecular dynamics is a large N-body problem where one successively it-

erates Newton’s equations with a specified short-range interparticle potential.

In a molecular dynamics code, the molecule either behaves like a hard sphere

that bounces off other hard spheres or interacts with other particles via some

continuous two-body potential, usually a Lennard-Jones 6-12 potential [1]. The

Lennard-Jones potential function u(r) models how individual atoms interact

U(r) = 4E
[(r◦

r

)12
−

(r◦
r

)6
]
, (13)

where r is the interatomic separtion, E is an energy parameter specifying the

depth of the minimum of the the Lennard-Jones potential, and r◦ is a length

parameter specifying the interatomic separation distance at which the Lennard-

Jones potential is zero. Conceptually each molecule has a definite position

within a perfectly smooth space, a continuum, and the molecule’s momentum

is any vector (arbitrary in both direction and magnitude).

In three dimensional simulations, there are 6N components of the position

vector and momentum vector for N molecules: these components are taken to

be real valued quantities. Therefore in traditional computer simulation codes,

the position and momentum components are approximated by finite precision

floating point numbers, and because of the limited numerical range of finite size
6Levesque and Verlet have recently presented a reversible molecular dynamics scheme that

exactly conserves momentum [41]. Their scheme employs 60-bit integers to encode the posi-
tions of the molecules as they iterate Newton’s equation of motion, which for the ith molecule
is

ri(t+ δt) = −ri(t− δt) + 2ri(t) +
δt2

m

X

j

fij(t).

In effect they are constraining the molecules to move along a regular and periodic cubic spatial
lattice. Floating point is used in the computation of the intermolecular forces, but rounded
in a consistent fashion so that the sum of all forces is identically zero,

P
ij fij(t) = 0. This

rounding does however induce uncontrolled errors in the total energy which in their scheme
are manifest as fluctuations about the expected value.
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floating point as mentioned above, the position and momentum components

are consequently discretized. The “computational space” is never a perfectly

smooth continuum.

Similarly, the interaction potential, conceptually a real valued quantity, typ-

ically is also discretized by floating-point arithmetic. Furthermore because of

limitations in computational power, the interaction potential is usually cutoff

beyond a short distance away from the molecule. So the floating point approx-

imations of the real valued dynamical quantities induce representational dis-

crepancies arising from numerical round-off. Nevertheless, if these discrepancies

in the numerical simulation are kept small enough, the simulated dynamics re-

mains stable, and a molecular dynamics code becomes a useful tool for studying

many-body systems. Thus molecular dynamicists using floating point arith-

metic [53] have created numerous useful physical modelling applications [2] and

are continually finding new ones [1, 54].

To understand the effect of representational round-off error in traditional

molecular dynamics simulation, consider a floating point number that encodes

a component of the molecule’s position coordinate. Flipping the least significant

bit of this number represents a small displacement of that molecule along one of

the axes. This distance is a kind of grain length since this displacement distance

characterizes the scale of granularity of the computational space. Therefore,

to limit the effect of this numerical discrepancy in the simulation, separation

distances between molecules must be many orders of magnitude greater than

the grain length. Next, consider a floating point number that encodes a com-

ponent of the molecule’s momentum vector. Flipping the least significant bit of

this number represents a small impulse along one of the axes. Again, to limit

the effect of this numerical discrepancy, the force of the interaction between

molecules must cause accelerations many orders of magnitude greater than the

smallest numerical momentum shift.

As a consequence of these types of numerical limitations, as a molecule

traverses the distance of a mean-free path or as time elapses the duration of

a mean-free time, many thousands of computational iterations are customarily
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expended in a molecular dynamics code to ensure the simulation’s validity. In

other words, a large amount of computational power is expended each mean-free

time of a molecular dynamics simulation to mitigate against round-off error and

ensure overall numerical stability. Allocating computational power in this way

limits the overall spatial and temporal scales achievable in the simulation.

6 Shrinking Bits

The informational extent of physical systems, such as the state of 1023 molecules

in a cup of coffee, is quite extensive compared to the informational extent of

a computer’s memory, which today is currently about 109 bits in a desktop

workstation. Furthermore, the computer’s ability to process this information

quickly7 is again extremely limited when compared to the microscopic rate of

change in physical systems.

This leads one to ask the following question: Will we ever have a computer

big enough to capture all molecular dynamics completely, or in other words, is

there a lower bound to the size of the physical embodiment of a single bit in

a computation? One might expect a fundamental limit for bit densities to be

the atomic densities of a solid (or liquid). The semiconductor industry is driven

by its ability to pack more and more bits into a chip, typically a silicon-oxide

substrate with a surface area of about a square centimeter. The data plotted in

figure 1 clearly shows an exponential decrease in the areal size of a bit over the

last fifty years, from 18,000 bits in the 1946 Eniac computer to about a trillion

bits in today’s biggest parallel supercomputer. It is clear there is an ongoing

exponential reduction in bit size with its linear dimension halving approximately

every 18 months. It appears a bit’s size is heading towards the atom’s size, and

if the trend continues, DNA base pair densities (24 Angstrom feature size) will

be achieved perhaps two decades from now. Computing at this small scale has

been termed nanoscale computing.

Nanometer feature sizes (perhaps feasible around the year 2020) will allow
7Currently the overall bit change rate in a computational processing unit is about ten

billion Hertz: around 100 bits clocked at 100 MHz.
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about 1016 qubits to be packed on a chip. Yet even 1016 qubits is still far short

of Avagadro’s number. So a molecular dynamicist around the year 2020 will

still have insufficient computer memory to store all the microscopic positions

and momenta of the molecules in a cup of coffee. So for the rest of our lives we

will suffer the handicap of having far too few qubits to encode things completely.

7 Lattice Molecular Dynamics

So what can one do to simulate the turbulent flow of coffee as the milk is poured

in? Clearly it is reasonable to get rid of useless detail in a computer simulation of

the macroscopic behavior of a physical system. Of course almost all microscopic

information is eliminated by formulating a set of governing partial differential

equations that hold at macroscopic scales, yet as discussed above such high level

formulations of the multiphase flow equations may not be reliable away from

the critical point. We lack good model partial differential equations to capture

all the relevant physical processes related to interfacial motion. Furthermore

coding partial differential equations in modern computer languages engenders

floating point approximations which may lead to computational instabilities.

While high level schemes are problematic, the traditional low level scheme,

molecular dynamics, does not provide enough scale to capture large scale dynam-

ical and nonequilibrium hydrodynamic behavior because much of the available

computational power is used to squelch the effect of floating point round-off

error. And in our lifetime it is likely that there will never be a computer quite

big enough to model the required scales.

In this section we explore an alternative scheme that does not start with a

macroscopic partial differential equation yet which eliminates much microscopic

detail and avoids uncontrolled computational round-off error. We shall argue

that it is possible to construct an artificially discrete microscopic dynamics that

behaves at its macroscopic scale quite similarly to the macroscopic description

of some interesting physical systems. Since computers are finite and discrete,

it is desirable to consider an artificially discrete microscopic dynamics that is
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maximally discretized. It is possible to capture important physical processes

yet explore much larger spatial and temporal scales than molecular dynamics.

This approach may be termed lattice molecular dynamics: it is a multienergy

lattice gas method with a quite general long-range interaction. Early lattice gas

methods were very limited in their energies and in their interactions.

It is known that interparticle potentials can be modeled by including a sin-

gle anisotropic long-range interaction in the lattice gas dynamics for discrete

momentum exchange between particles. The simplest model of this kind is the

Kadanoff-Swift-Ising model [37]. A long-range interaction was used in a lattice

gas scheme by Appert and Zaleski [3] in 1990 to cause an attractive force between

particles giving rise to a nonthermal liquid-gas phase transition.8 I consider a

generalization of their approach by including repulsive forces between particles

in addition to the attractive forces. This simple idea—using both attractive

and repulsive long-range interactions—opens the way to many rich modeling

possibilities [75, 71, 73].

The new possibility is to employ interactions transitions satisfying the prin-

ciple of semi-detailed balance between multiple energy levels.

In the multienergy long-range lattice gas, the interaction energy density

that arises from particular transitions between configurations of particles at

locations x and x′ is proportional to the product of two probabilities, V ∝∑
〈xx′〉 ψemit(x′)ψabsorb(x), where the quantities ψemit and ψabsorb are emission

and absorption probabilities for momentum exchanges conveying an interparticle

force −∂iV. This approach is not without its drawbacks and limitations. The

interaction range for the momentum exchange must be much smaller than any

scale related to the dynamics of the interface region that exists between the two

phases in order for the long-range lattice gas to simulate the correct macroscopic

dynamics. For example, the interaction range must be much smaller than the

radius of curvature of a drop or bubble, and much smaller than the wavelength
8A nonthermal lattice-gas is one with intensive quantities for the pressure and density, but

no intensive quantity related to temperature. This is because, a nonthermal lattice-gas is one
where all particles move at a single speed and where a particle’s mass and momentum are
uniquely defined, but its energy is not.
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of a capillary wave or gravity wave travelling along the interface. I will try

to point out other limitations as the formulation of the method is explained.

Yet the benefit of this lattice gas approach is it achieves a larger scale than

traditional molecular dynamics and is quite suitable for implementation on a

fine-grained quantum computer.

8 Artificially Discrete Microworlds

Before introducing kinetic lattice gas models, it is worthwhile to first mention

the most well known example of a maximally discretized “microworld,” the

Ising model of ferromagnets and antiferromagnets. Of all the simple models of

many-body systems in physics, the Ising model is perhaps the most well studied,

analytically and numerically.

The Ising model using classical up-down spins on a lattice is a simple model

of ferro- and antiferromagnets or liquid-gas systems. There is a mapping be-

tween the thermodynamic variables for fluids and magnets—the order parameter

ρ − ρc is analogous to the magnetization; and, the response function, the neg-

ative compressibility, is analogous to magnetic susceptibility. Requiring only

one classical bit of information per lattice site, the model captures the equilib-

rium thermodynamic behavior of these two phase systems in an elegant way.

Figure 2 illustrates the behavior of the order parameter and magnetic suscepti-

bility near the critical point for the onset of the order-disorder phase transition.

These two quantities are plotted versus temperature centered about the critical

temperature, Tc = 2/ log(1 +
√

2) = 2.2692. The Ising Hamiltonian is

H = −J
∑
〈ij〉

sisj ,

where 〈ij〉 denotes the set of nearest neighbor bonds between spins, si and sj ,

on the lattice. The energy of the spin-spin couple is modeled by J . The critical

temperature, Tc, is expressed in units of the spin-spin coupling energy divided

by the Boltzmann constant.

The Ising model manifests many universal properties: an order-disorder
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Figure 2: Total magnetization and susceptibility verses temperature is obtained on a 1024×
1024 simulation using a fast Monte Carlo Metropolis algorithm with randomly chosen non-
juxtaposed sites for parallel updating on the Connection Machine 2.
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phase transition [11], scaling [10] that relates critical-point exponents [36], crit-

ical slowing down, and so forth. The numerical techniques applied to it appear

to be endless: the Monte Carlo Metropolis algorithm, microcanonical cluster

Monte Carlo[21], Ising cellular automata [70, 69, 21], deterministic heat-bath

[32, 44], parallel Monte Carlo [56], multispin encoding [78], multigrid techniques

[38], Monte Carlo renormalization group [39, 65], and so on. In order to capture

the kinetic behavior of a liquid-gas fluid it is apropos to explore other simple

models—following after the Ising model in spirit—that capture the physical

kinetics of many-body systems, for example the behavior of a liquid-gas fluid

undergoing the order-disorder phase transition.

9 Classical Lattice Gas

For the purpose of simplifying a classical molecular dynamics program so that it

can be straightforwardly “coded” on a fine-grained quantum computer, consider

a completely discrete version of things. In this simplest case, one would still

like to correctly simulate the many-body system of N particles—that is, to

capture all the relevant physical kinetics at the macroscopic “hydrodynamic”

scale—yet one would attempt to achieve this using the most severely discretized

microscopic behavior.

Each particle is assigned a definite position within a crystallographic lattice

and time advances in discrete units. A particle is very restricted in the value

for its momentum: it can only move along a lattice direction going from one

site to a neighboring site, and so its velocity is quantized, ~v = ~ec, where ~e is a

nearest-neighbor lattice vector and c = `/τ is the ratio of the lattice cell size

to the size of the time-step. A classical particle occupies a point of the lattice,

it resides at a single site at a given time. The information needed to encode a

particle’s existence is a single classical bit associated with that site. If the bit

is on, the particle is there. If the bit is off, the particle is not there.

How many particles should be allowed to reside at one site of the lattice at

any particular time? A minimalist would require that the maximum number of
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particles that can simultaneously reside at a single lattice site should equal the

maximum number of distinct momenta one is willing to keep track of. In the

simplest scheme, there can be no more than one particle in each distinct local

state.

As a particle in state α at some lattice site of the crystallographic space

“hops” into an unoccupied state β at the same or a neighboring site, a digital

bit is moved from α and into β. Data permutations between sites correspond

to spatial translations and endow the bits with “kinetic energy.” Data permu-

tations at a particular site correspond to collisional interactions between bits.

The critical computational work is placed in the collisional interactions, since it

is there that the “decisions” are made as to whether or not a set of bits should

collide and if so how.

10 Lattice-Gas Paradigm

This computational picture of lattice-gas dynamics is related to finite-difference

methods for solving partial differential equations [67, 19]. But the lattice gas

methodology embodies values beyond the practicality of finite-difference schemes

for several reasons.

Two practical attributes of the lattice-gas paradigm are efficient massively

parallel fine-grained processing and modeling of complex physical systems with

stability properties different from those of other models. As another practical

matter, most computational fluid dynamics codes are complicated and intricate

in their approximations, whereas lattice gases are a quite simple conceptual

expression of Navier-Stokes fluid flow.

To quote Frisch, lattice gases possess “bit democracy” with all bits having

equal weight (an exception to this is the integer lattice gas). Bit democracy

usually is not as efficient as the bit weighting found in standard floating point

numerical methods. In a simple lattice gas, only a single bit is used to represent

a particle, whereas in molecular dynamics a few hundred bits are used (six

floating-point numbers for position and momentum). At small scales, molecular
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dynamics is the appropriate modelling tool. But at large hydrodynamic scales

and for quite complex fluids, lattice gases outstrip molecular dynamics and

becomes the modelling tool of choice (provided no competing high level schemes

are known—for complex fluids this is often the case [13]).

Lattice gases possess the theoretically attractive attributes of inherent sim-

plicity and universality. Just as simple models in statistical mechanics, such as

the Ising model mentioned above, shed light on equilibrium thermodynamics

and equilibrium critical phenomena, so too do lattice gas constructs shed light

on kinetics and dynamical phenomena [75]. Moreover, its inherent simplicity

gives the lattice gas pedagogical value since many properties of macroscopic

systems can be predicted through analysis of simple local microscopic proper-

ties. For example, the classical lattice gas construct provides a simple way to

comprehend certain properties of fluid systems, such as the dependence of the

shear viscosity on particle collision rates.

Lattice gases simulate physical systems while keeping mass, momentum,

and energy exactly conserved. Exact modeling is valuable, particularly in cases

where multiparticle correlations are essential to the system’s behavior. Lat-

tice gas simulations have verified theoretical predictions beyond the Boltzmann

mean-field approximation of uncorrelated collisions: the phenomenon of long-

time tails in the velocity autocorrelation function [2, 52, 26] has recently been

observed in lattice gases [40, 16, 17].

Like their cellular automata cousins, lattice gases are local. The combination

of simplicity and locality of lattice gas rules allows—in principle—nearly ideal

logic density. Earlier in the introduction I tried to extrapolate what would be the

highest logic density that one would expect two decades from now: qubits packed

at nanometer scales. Because of the locality of lattice gas algorithms, there is

the prospect of lattice gas architectures operating at such a high informational

density.
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Figure 3: MIT Laboratory for Computer Science cellular automata machine CAM-8. This 8
module prototype can evolve a D-dimensional cellular space with 32 million sites where each
site has 16 bits of data with a site update rate of 200 million per second. The communication
network is a Cartesian three-dimensional mesh. Crystallographic lattice geometries can be
directly embedded into the CAM-8.

11 The CAM-8 Prototype

To better understand the lattice-gas paradigm as a possible computing archi-

tecture, a prototype machine has been constructed, called the cellular automata

machine CAM-8 and is shown in figure 3. The CAM-8 architecture [48, 47] is

the latest in a line of cellular automata machines developed by the Information

Mechanics Group at MIT [66, 69, 49]. The CAM-8 architecture itself is a simple

digital electronic realization of the lattice gas scheme, and in the early 1990’s

was tested against other parallel supercomputers and is optimal at perform-

ing lattice gas simulations [77]. Lattice gas data streaming and collisions are

directly implemented in the architecture.
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Figure 4: CAM-8 system diagram. (a) A single processing node, with DRAM site data
flowing through an SRAM lookup table and back into DRAM. (b) Spatial array of CAM-8
nodes, with nearest-neighbor (mesh) interconnect (1 wire/bit-slice in each direction.

One can think of the discrete memory space within the CAM-8 as an artificial

microworld. The discrete microworld paradigm with simple local rules govern-

ing the system’s evolution made it quite straightforward to construct the fine-

grained parallel CAM-8 out of elementary “chunks”.9 Figure 4 is a schematic

diagram of a CAM-8 system. On the left is a single hardware module—the

elementary “chunk” of the architecture. On the right is an indefinitely extend-

able array of modules (in the CAM-8 prototype the array is actually three-

dimensional). A uniform spatial calculation is divided up evenly among these

modules, with each module containing a volume of 16 million lattice sites. These

sites are scanned in a sequential pipelined fashion. In the diagram, the solid

lines between modules indicate a local mesh interconnection. These wires are

used for spatial data movements.10

9An expanded machine, called the CAM-8-64 [68], in 1994 was designed to incorporate
a billion sites using the standard CAM-8 module. A new design using RAMBus memory
chips and field programmable gate arrays has recently been completed by Margolus and is
two orders of magnitude faster than the CAM-8.

10There is also a tree network (not shown) connecting all modules to the front-end host, a
SPARC workstation with a custom SBus interface card, that controls the CAM-8. It down-
loads a bit-mapped pattern as the initial condition for the simulations. It also sends a “step-
list” to the CAM-8 to specify the sequence of kicks and scans that evolve the lattice gas in time.
One can view the lattice gas simulation in real-time since a custom video module captures
site data for display on a VGA monitor, a useful feature for lattice gas algorithm develop-
ment, test and evaluation. The CAM-8 has built-in 25-bit event counters allowing real-time
measurements without slowing the lattice gas evolution. This feature is used to do real-time
coarse-grain block averaging of the occupation variables and to compute the components of
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The CAM-8 uses custom VLSI chips to control data movement and com-

modity dynamic random access memory (DRAM) to store its state data. Each

site of the lattice has 16 bits (or a multiple thereof). A 16-bit lattice site is also

referred to as a cell. Each bit of a cell is part of an entire bit plane of the lattice,

which is stored in a single DRAM chip. Therefore, a bit plane can be “trans-

lated” through the lattice arbitrarily by off-setting the pointer to the zeroth

memory address in the DRAM chip. The translation vectors for the bit planes

are termed kicks. The specification of the x,y, and z components of the kicks for

each bit plane (or hyperplane) defines the lattice geometry. The kicks can be

changed during the simulation. Thus, the data movement in the CAM-8 is quite

general. Once the kicks are specified, the coding of the lattice gas streaming

is completed. In effect, the kicks determine all the global permutations of the

data.

The CAM-8 runs through its discrete dynamics with absolutely no round-off

error so that in a lattice gas simulation all additive conserved quantities are kept

exactly fixed throughout the course of a simulation. Its processors are ultimately

simple, each able to act on only a small number of bits of information at a

time. This is sufficient for a classical lattice gas algorithm that only permutes

bits, never creating or destroying bits of information, just shuffling them about.

Permutations achieve particle conserving reversible dynamics and are used in all

classical lattice gas implementations on the CAM-8. Local permutations of data

occur within the cells. These permutations are the computational metaphor for

physical collisions between particles. The CAM-8 uses commodity static random

access memory (SRAM) to store all the local state transitions, or local rules.11

the momentum vectors for each block. The amount of coarse-grained data is sufficiently small
to be transferred back to the front-end host for graphical display as an evolving flow field
within an X-window.

11All local permutations are implemented in look-up tables. All possible physical events
with a certain input configuration and a certain output configuration are precomputed and
stored in SRAM, for fast table look-up. The width of the CAM-8 look-up tables is 16-bits,
or 64K entries. This is a reasonable width satisfying the opposing considerations of model
complexity versus memory size limitations for the SRAM. Site permutations of data wider
than 16-bits must be implemented in several successive table look-up passes. Since the look-up
tables are double buffered, a scan of the space can be performed while a new look-up table is
loaded for the next scan.
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Within a CAM-8 classical lattice gas simulation, all information is exactly

preserved in time, and as a consequence of this fact, at any point in a simulation

one can decide to reverse the computation: the state of the artificial microworld

evolves back to its initial state. Therefore the dynamics has a time-reversal

invariance, or in other words, the algorithm is logically invertible. Because of

algorithm reversibility, CAM-8 lattice gas simulations are unconditionally sta-

ble, since all transitions from any state to a new state occurs if the new state

is a legitimate state, that is, one with the same number of particles and the

same momentum. Unconditional stability in a numerical treatment is a highly

valuable and desirable characteristic. Yet the CAM-8, which is a classical com-

puter, is it not limited to performing only unitary operations on its 16-bit cell

(i.e. permutations), it can do general mappings which are irreversible. There-

fore, the CAM-8 dissipates heat like any conventional computer even though

the Szilard entropy of the lattice gas is unchanged, but an optimal lattice gas

computer would dissipate no heat as it processed through its simulation.

12 Limitations and Drawbacks of Classical Lat-
tice Gases

In a classical lattice gas Boolean bits represent particles. In lattice gas machines

such as the CAM-8 discussed in the previous section, reversible computational

dynamics has been observed to give rise to hydrodynamic-like behavior quite

similar to viscous and multiphase fluid motion observed in nature. Numerical

measurements taken from classical lattice gas simulations are generally in ex-

cellent agreement with mean-field theory predictions [34, 3, 71] and, in the rare

instance when this is not the case, with more exact field theoretic calculations

[40, 17, 12]. Yet it is important to stress that in many cases classical lattice gases

can behave in bizarre and clearly unphysical ways, albeit usually far away from

equilibrium where theoretical constraints on the dynamics are violated.12 In
12These bizarre behaviors are not signs of instabilities, but indicate that far away from

equilibrium artifacts caused by the discreteness of the microscopic dynamics can arise at the
macroscopic scale.
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well understood regimes where all the necessary constraints are met (i.e. flows

with small Knudsen numbers where the mean-free-path is much smaller than

the characteristic scale of hydrodynamic gradients and where the flow speed is

much slower than sound), usually the available effective spatial and temporal

resolution within the fine-grained computer severely limits the usefulness of the

simulation [51]. This is because lattice gas simulation is a form of classical

molecular dynamics as explained above and we will always have a “shortage” of

bits to simulate large-scale things including the finest details.

In a lattice gas at every time step as a bit hops a single lattice length,

it undergoes a collision. So a mean-free-time elapses and a mean-free-path is

traversed at every computational iteration by every particle. Although this is

orders of magnitude more efficient than a classical molecular dynamics simula-

tion where many iterations are expended per mean-free-time or mean-free-path,

the classical lattice gas is like its classical molecular dynamics counterpart in

that the available number of particles per computer simulation is still far too few

(on the order of billions) in comparison with the vast numbers of particles in any

natural situation (on the order of Avagadro’s number) that it is trying to repre-

sent. So it is not surprising that classical lattice gases fail to adequately capture

the fine details within large scale hydrodynamics motions, namely turbulence.

As well as limited by spatial and temporal resolution, classical lattice gases

are plagued with noisy fluctuations [22] (these are somewhat related issues).

Although these fluctuations have some positive advantages—for example they

are akin to random fluctuation in many physical processes and an important

mechanism whereby the lattice gas explores different metastable states [55]—

, these fluctuations also have the negative aspect of effectively reducing the

simulation’s macroscopic scale. Assuming the dynamics is ergotic, to remove

the noise in any measurement, one must either increase the spatial size of the

lattice to allow for more coarse-grain averaging or else one must increase the

number of sample runs with different initial conditions, a means of ensemble

averaging. In either case, significant computational resources must be expended

to remove noisy fluctuations instead of expending these resources on increasing
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the simulation’s size. This particular drawback of classical lattice gases has so

far limited its application to solely academic uses.

Some possibilities have been explored to try to avoid the noisy fluctuations

in classical lattice gas simulations. The lattice Boltzmann gas, a generalization

of the classical lattice gas replacing Boolean bits with real floating point num-

bers, models the particle kinetics directly at the mesoscopic level [19]. There are

fluctuations in the Boltzmann gas also, but they have smaller sizes. Although

widely used nowadays and already applied to many important numerical appli-

cations [58, 59, 60, 57], the lattice Boltzmann method suffers from numerical

instabilities typically encountered in finite-difference methods. The reason for

this comes about by the method’s lack of detailed balance, or even its lack of the

weaker condition of semi-detailed balance, in its BGK collision operator.13 Since

it is essentially a first-order finite-difference method [50], the lattice Boltzmann

method is not competitive with state-of-the-art and higher-order computational

fluid dynamics methods, employing multiscaling or curvilinear adaptive mesh-

ing for example. Therefore, the conventional lattice Boltzmann method is not

a satisfactory alternative to standard high-level numerical schemes.

The integer lattice gas, another generalization of the classical lattice gas,

replaces each single Boolean bit with an integer [15]. The integer lattice gas

still models the particle kinetics at the microscopic level, but has exponentially

more local configurations available per lattice site than the classical lattice gas.

This significantly reduces noise in the simulation. As a serendipitous benefit the

integer lattice gases also possesses Galilean invariance for some particle densities

whereas the classical lattice gas does not. Moreover, since the integer lattice

gas retains detailed balance in its local collisions as well as computational re-

versibility, it is a model amenable to all the statistical mechanics one can muster.
13Mass and momentum are only conserved to within the precision of the floating-point

representation. If the value of the single-particle distribution function at some site is close
to either zero or one, it is possible owning to numerical round-off errors that the distribution
function will become either negative or greater than one. When either of these situations
arise, the latttice Boltzmann simulation will immediately become unstable and the values of
the distribution function will diverge until an numerical underflow or overflow event occurs.
Usually the BGK collision operator becomes unstable in a region with a high density gradient,
for example at an interfacial boundary, or in region a with a high velocity shear.
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Yet its drawbacks are two-fold. Firstly, even in the infinite integer limit, the

transport coefficient for the kinematic viscosity remains very high, only slightly

lower than its single bit counterpart. Therefore, there is no significant increase

in the method’s computational efficiency over the single bit case. Secondly, it

is extremely costly to implement a collision operator for large integers. So in

practice, it takes much effort to realize the theoretical advantages offered by

an integer lattice gas, but as demonstrated in Volume I, integer lattice gases

do work. Their intermediate statistics interpolates between Fermi-Dirac and

Bose-Einstein statistics.

13 Classical Lattice Gases on Quantum Com-
puters

Let us now return to the line of speculation begun earlier in the introduction

regarding a quantum computer comprised of an array of qubits packed at near

atomic densities—on the order of a nanometer separating adjacent qubits where

quantum mechanical interactions such as dipole-dipole coupling between qubit

pairs are exploited for computation. All operations are necessarily local in-

volving only nearest neighbors of qubits within the computer’s crystallographic

lattice. An important architectural issue is defining a reasonable strategy for

“processing” a collection of qubits to achieve useful computational dynamics.

I have already discussed at some length the simulation of classical lattice gas

systems on classical computers such as the CAM-8. It is worthwhile to consider

which quantum systems can be simulated on a classical computer–I’ll discuss

this shortly–and furthermore it is worthwhile to consider what practicality a

quantum computer offers for classical simulations. The simplest classical lattice

molecular dynamics simulation on a fine-grained quantum computer would be

one for a Navier-Stokes classical fluid. So let us focus on this.

In the quantum lattice gas presented here many system configurations (here

the term “system configurations” indicates single points in the 6N -dimensional

phasespace) can be simultaneously encoded in the computer’s lattice of qubits
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because of the possibility of superposition of quantum states (here the term

“states” indicates a quantum wavefunction formed over the direct product man-

ifold of N qubits). Quantum parallelism may be used to simultaneously encode

many microscopic phasespace points, an ensemble of states of a classical N -

particle system characterized by particular additive conserved quantities occur-

ring in the model physical system. So in a single time step iteration an entire

region of phasespace corresponding to a particular macroscopic situation can

all be simultaneously evolved.14 In a quantum lattice gas this is possible be-

cause of quantum superposition in the microscopic dynamics.15 Therefore any

measurement taken from the numerical quantum simulation, presumably at a

coarse-grain level, then gives a value of the dynamical quantity.

As implied in the beginning of the introduction, it appears impractical to

build a quantum computer with so many qubits where quantum coherence is

mantained. This is indeed the case. Nevertheless, it is worthwhile to ask the

following question: Can any useful computation be accomplished on a fine-

grained quantum computer that does not require global coherence of the system

wavefunction? The most surprising characteristic of the lattice gas simulation on

a quantum computer (called a quantum lattice gas with controlled decoherence)

is that it may give rise to Navier-Stokes fluid dynamics at the macroscopic scale

without the need for global coherence of the system wavefunction. The basics

of quantum lattice gas theory and the Navier-Stokes quantum lattice gas are

treated in Volume III.
14In a fined-grained quantum computer with a million qubits say, the number of phasespace

points that could be simultaneously evolved is amazingly large, ∼ 21,000,000.
15In a classical lattice gas, Boolean commutation relations apply instead of quantum

fermionic commutation relations. This does not significantly ease any analytical calculations
because Boolean commutation relations causes almost as much complications as the fermionic
anticommutation relations. Yet this simplification makes the computational simulation of
large systems practical. The CAM-8 is a tangible realization of this fact.
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14 Quantum Lattice Gases on Classical Com-
puters

Since no quantum computers exist today, let us consider what quantum sim-

ulations can be carried out on a classical computer. Given a system with N

qubits, there are 2N basis kets in the number representation. The number of

kets in what is termed the p-particle sector is equal to the binomial coefficient

(N choose p). This is because of the Pascal triangle identity

N∑
p=0

(
N
p

)
= 2N . (14)

Suppose the quantum lattice gas wavefunction is constrained to reside in the

1-particle sector. The number of basis kets in this sub-space of the Hilbert mani-

fold identically equals the number of qubits since (N choose 1) = N . That is, in

the 1-particle sector of the quantum Hilbert space, there are N amplitudes, each

a complex number. So the 1-particle sector of an N -qubit quantum computer

can be represented on a classical computer with N complex numbers. While

a classsical computer can only simulate the one-body problem using N com-

plex amplitudes, a quantum computer in principle can simulate the full N -body

problem using N qubits because of the exponential size of its Hilbert space.

This clearly displays the advantage offered by a quantum computer. Yet even

in the 1-particle sector, a fine-grained quantum computer is extremely useful

since it could simulate, for example, the nonrelativistic Schrödinger equation [?]

or any lattice molecular dynamics simulation of complex fluids discussed earlier

in the introduction.

Since the Hilbert space of the quantum lattice gas grows exponentially in

the number of qubits, to “fit things” into a classical computer one has only two

choices: use the one-particle sector of a large lattice system or consider only

simple models on small lattice clusters.16 17

16The Boghosian-Levermore one dimensional lattice gas model for the solution of Burgers’
equation is an example [14] of a useful and simple lattice gas model. With only two momentum
states per site, left and right going particles, a present day classical computer could handle a
quantum version of this lattice gas on a lattice with ten sites.

17It is possible to do a quantum Monte Carlo simulation of a Navier-Stokes quantum lattice
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Using the 1-particle sector of a fined-grained quantum computer it is pos-

sible to choose a particular local and unitary evolution that gives rise to Bose

condensation in the scaling limit. It is possible to construct a coupled lattice

gas system, a quantum lattice gas and a classical lattice gas in mutual con-

tact through “external” potentials. The coupled lattice gas system behaves like

liquid He4 where it is a superfluid at a finite temperature below the λ-point.

An interesting system is the Hubbard model with four spin states per site. In

this case the quantum spins states are empty, up, down, and doubly occupied.

A method of exactly solving the Hubbard model that reduces the Hamiltonian

matrix of elements to block diagonal form with no block exceeding the size of

5 × 5 for the three and four site clusters. The idea is to use basic operators

(i.e. creation and annihilation operators) to construct more complex operators

that eventually aid in the problem’s solutions. In the case of the Hubbard

model, the total number operator, finite point group symmetry operators, the

z-component of the total spin operator, and the total spin squared operator

may be all constructed from the creation and annihilation operators, as can the

Hamiltonian itself. Since these operators commute with the Hamiltonian, they

are used to find representations where the Hamiltonian is block diagonalized.

15 Quantum Lattice Gases on Quantum Com-
puters

Restricting the system to a small cluster size is one way in which the creation and

annihilation operators are used to “exactly” simulate a multiparticle quantum

system on a classical computer. It is also possible to restrict the dynamics

to the 1-particle sector. But Feynman’s original idea of quantum simulations

on quantum computers is much more interesting and powerful. So finally, let

us now consider this general computational situation. We know that for large

clusters and large N -particle sectors, there is no way of solving things exactly on

a classical computer. But suppose we have a quantum computer. Even a small

gas. This provides a mean for determining the expected shear viscosity of the Navier-Stokes
quantum lattice gas.
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quantum computer with only a few qubits, say 50, would allow us to simulate

systems with clusters sizes we could not handle by any other available means.

Suppose the quantum computer’s nanoscale architecture is fashioned ac-

cording to the lattice-gas paradigm [31, 30] so that small groups of qubits are

updated at a time by suitably chosen local quantum mechanical interactions—

all the computational operations are strictly local as they are partitioned in

both space and time. Suppose the bits in a classical lattice gas are replaced

with qubits, and otherwise everything else is kept conceptually the same. The

partitioning begins with an independent computation performed at each lattice

site by a collisional unitary operator, denote Ĉ. That is, Ĉ is block diagonal

since it independently acts on each group of on-site qubits. Furthermore, within

the on-site manifold, Ĉ is blocked over all the equivalence classes. Post collision

interference of local configurations occurs after the application of Ĉ. That is,

there is the possibility of the superposition of outgoing configurations.

A translational permutation operator, denoted Ŝ, exchanges qubits between

neighboring sites of the lattice in such a fashion that every qubit translates

through the crystallographic space as if it possessed a unit of momentum. In

this way, a qubit encodes a particle with unit mass and unit momentum that

undergoes collisional scattering with other qubits it happens to meet at any

lattice site. Post streaming quantum entanglement globally occurs because Ŝ is

not block diagonal in any representation in which Ĉ is block diagonal.

One computational time step is completed following a single application of

the collisional unitary and translational permutation operators. So the micro-

scopic transport equation is

| Ψ(t+ τ)〉 = ŜĈ | Ψ(t)〉. (15)

The characteristic feature of classical lattice gas computations is that all

operators amount to conditional permutations of data. In classical lattice gas

computers, such as the CAM-8, local permutations of site data is accomplished

through a general matrix transformation in look-up table fashion and global

permutation of site data is accomplished through pointer manipulations as ex-
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plained above in §11. The underpinning of these kind of permutation operators,

in a mathematical sense, conceptually reduces down to a single and very simple

operation: interchange. A novel operator presented is the interchange opera-

tor. Using interchange operators I specify the quantum lattice gas streaming

evolution operator.18

One may write down a 2-qubit interchange operator in terms of products of

particle creation and annihilation operators. The interchange operator, χ̂, can

be made unitary and then explicitly written in exponential form, χ̂ = exp(−iN̂).

If the evolution of the lattice gas is comprised of successive application of inter-

change operators over a partitioned lattice for a set of qubit pairs {Γ}, then a

unitary streaming operator, Ŝ, for the lattice gas is made by successive appli-

cation of the interchange operator

Ŝ =
∏
{Γ}

χ̂Γ. (16)

In general, interchange operators are useful for expressing the streaming part of

the unitary evolution operator of a quantum lattice gas system. It is straight-

forward to construct the unitary evolution streaming for a quantum lattice gas.

A very surprising is result regarding the quantum lattice gas is that the

unitary collision operator, Ĉ, which is block diagonalized over the equivalence

classes of local configurations, can be any unitary matrix that mixes states

within an equivalence class is sufficient. Particular choices of Ĉ optimally reduce

the shear viscosity, but all are acceptable.

At this early stage in the exploration of quantum computing there does

not yet exist much evidence indicating whether this is a reasonable strategy

for evolving a large array of qubits [9, 43], nevertheless I explore the quantum

lattice-gas paradigm because of its simplicity and because the theory and com-

putation of classical lattice gas dynamics points the way to this new type of

lattice based quantum computation.
18In the case of the Hubbard Hamiltonian, the interchange operators are used to exactly

solve the model for very small clusters of sites.
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